Automated Essay Scoring Based on Finite State Transducer: towards ASR Transcription of Oral English Speech
نویسندگان
چکیده
Conventional Automated Essay Scoring (AES) measures may cause severe problems when directly applied in scoring Automatic Speech Recognition (ASR) transcription as they are error sensitive and unsuitable for the characteristic of ASR transcription. Therefore, we introduce a framework of Finite State Transducer (FST) to avoid the shortcomings. Compared with the Latent Semantic Analysis with Support Vector Regression (LSA-SVR) method (stands for the conventional measures), our FST method shows better performance especially towards the ASR transcription. In addition, we apply the synonyms similarity to expand the FST model. The final scoring performance reaches an acceptable level of 0.80 which is only 0.07 lower than the correlation (0.87) between human raters.
منابع مشابه
Automatic scoring of non-native children's spoken language proficiency
In this study, we aim to automatically score the spoken responses from an international English assessment targeted to non-native English-speaking children aged 8 years and above. In contrast to most previous studies focusing on scoring of adult non-native English speech, we explored automated scoring of child language assessment. We developed automated scoring models based on a large set of fe...
متن کاملEfficient Automatic Speech Recognition on the GPU
Automatic speech recognition (ASR) allows multimedia content to be transcribed from acoustic waveforms to word sequences. This technology is emerging as a critical component in data analytics for a wealth of media data that is being generated everyday. Commercial usage scenarios are already appearing in industries such as customer service call centers for data analytics where ASR is used to sea...
متن کاملDysarthric Speech Recognition Based on Error-Correction in a Weighted Finite State Transducer Framework
In this paper, a dysarthric speech recognition error-correction method in a weighted finite state transducer (WFST) framework is proposed to improve the performance of dysarthric automatic speech recognition (ASR). To this end, pronunciation variation models are constructed from a context-dependent confusion matrix based on a weighted Kullback-Leibler (KL) distance between triphones. Then, a WF...
متن کاملAssessment of ESL Learners' Syntactic Competence Based on Similarity Measures
This study presents a novel method that measures English language learners’ syntactic competence towards improving automated speech scoring systems. In contrast to most previous studies which focus on the length of production units such as the mean length of clauses, we focused on capturing the differences in the distribution of morpho-syntactic features or grammatical expressions across profic...
متن کاملPerformance Improvement of Dysarthric Speech Recognition Using Context-Dependent Pronunciation Variation Modeling Based on Kullback-Leibler Distance
In this paper, we propose context-dependent pronunciation variation modeling based on the Kullback-Leibler (KL) distance for improving the performance of dysarthric automatic speech recognition (ASR). To this end, we construct a triphone confusion matrix based on KL distances between triphone models, and build a weighted finite state transducer (WFST) from the triphone confusion matrix. Then, d...
متن کامل